Example 6.11
Calculation of Integrals Using Discrete Chebyshev Transform
Contents
Initialization
close all; clear N example u j X U a d I format long; N = 16; example = 'b'; % Functions we integrate switch example case 'a' u = @(y) (pi-1)/4 * sin(0.5*(pi-1)*y + 0.5*(pi+1))./... (0.5*(pi-1)*y + 0.5*(pi+1)).^3; case 'b' u = @(y) 7/2 * log(3.5*y + 4.5)./(3.5*y + 4.5); end;
Get the Chebyshev Transform
j = [N:-1:0]'; X = cos(j*pi/N); U = u(X); a = dct1(U); a = [a;0]; d = zeros(N+2,1);
Numerical Integration
for j = [3:N+1] d(j) = (a(j-1)-a(j+1))/(2*(j-1)); end; d(2) = (2*a(1)-a(3))/2; d(N+2) = a(N+1)/(N+1); for j = [2:N+2] d(1) = d(1) + (-1)^j * d(j); end;
I(x) is know directly in x = 1
I = sum(d)
I = 2.162036126774235